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The stability of a viscous fluid between rotating 
cylinders with an axial flow 
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(Received 25 July 1960) 

The stability of a viscous fluid between two concentric rotating cylinders with an 
axial flow is investigated. It is assumed that the cylinders are rotating in the 
same direction and that the spacing between the cylinders is small. The critical 
Taylor number is computed for small Reynolds number associated with the 
axial flow. It is found that the critical Taylor number incremes with increasing 
Reynolds number. 

1. Introduction 
The stability characteristics of viscous flow between concentric rotating cylin- 

ders with an axial flow are of interest in several technical areas including paper 
making (Appel 1959), and the design of rotating electrical machinery (Kaye 
& Elgar 1957). 

Goldstein (1937) considered this problem theoretically for the case of the 
outer cylinder at rest and the gap between the cylinders small compared to the 
mean radius. He found that the critical Taylor number T (associated with the 
angular velocity of the inner cylinder)* increases initially, as the Reynolds 
number R (associated with the axial velocity) increases from 0 to a value of 
about 20, and then decreases quite rapidly as R increases to about 25. 

Cornish (1933) and Fage (1938) used pressure drop measurements to determine 
experimentally the critical angular velocity of the inner cylinder for given axial 
flows in the case in which the outer cylinder is at  rest. The results of both of 
these investigations indicated that the critical Taylor number increases with 
increasing Reynolds number. However, the results of the two investigations are 
considerably different from one another. The results of Cornish (1933) give 
Taylor numbers larger by a factor of about three than those found by Fage 
(1938). Indeed an extrapolation of Cornish’s results to the case of zero axial 
velocity gives a value of the critical Taylor number about three times larger than 
the known correct value. For this reason Goldstein (1937) concluded that Cor- 
nish was measuring a different phenomenon from that considered by himself. 
On the other hand, the results of Fage (1938), while giving the correct Taylor 
number when extrapolated to the case of zero axial velocity, show only a very 
slight increase of the critical Taylor number with increasing Reynolds number 
until fairly large values of R. More recently Kaye & Elgar (1957) have considered 

* See equations (5) for a precise definition of the Taylor number and the Reynolds 
number. 
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this problem experimentally using an apparatus which allowed visual and photo- 
graphic as well as hot-wire measurements. Their measurements (again, for the 
case of the outer cylinder at rest) show that the critical Taylor number increases 
fairly rapidly with increasing Reynolds number. Their results are in disagree- 
ment with the results of Cornish (1933) and Fage (1938). 

This paper is concerned with a theoretical analysis of the stability of a viscous 
fluid between concentric rotating cylinders with a small axial flow. The charac- 
teristic value problem is formulated in $ 2 using the assumption that the spacing 
between the cylinders is small compared to the mean radius. In  the case in 
which the cylinders are rotating in the same direction, the characteristic value 
problem is solved in $ 3  with the axial velocity replaced by its average value. 
Several methods of solving this problem are discussed. In  $ 4 the same problem 
is treated using a parabolic axial velocity distribution and the results are com- 
pared with those of $3. It is found in both cases that the critical Taylor number 
increases rapidly (more rapidly for the latter case) from the correct value 
(2' N 1710) a t  R = 0 to a value of abut 7000 at R = 60. The results further show 
that the frequency and wavelength of the distribution are sensitive to the 
approximation used for the axial velocity. In both cases the results of the present 
analysis are in complete disagreement with the work of Goldstein (1937), 
Cornish (1933) and Fage (1938) and in qualitative agreement with the work of 
Kaye & Elgar (1957). 

2. The characteristic value problem 
Consider two infinitely long concentric cylinders. Let (r,  8, x )  be cylindrical 

coordinates, and let R,, R,, Q, and a, denote the radii and angular velocities of 
the inner and outer cylinders, respectively. If u,., ue, u, denote the components 
of velocity in the increasing r,  8, and z direction and p denotes the pressure, 
the Navier-Stokes equations admit a steady solution of the form 

u,. = 0, ue = V(r ) ,  u, = W(r) ,  ap/az = constant. (1) 

Now superimpose on this steady motion a rotationally symmetric disturbance 
of a form such that the 8 component of velocity is 

ue(T ,  z, t )  = V(r )  + V ( T )  ei(d+.\Z). (2) 

In  general cr will be complex. The motion will be stable or unstable as the imagi- 
nary part of (r is positive or negative, respectively. We shall be concerned in this 
paper with the case of neutral stability for which the imaginary part of r~ is 
equal to zero. Notice this is different from the case for zero axial flow where the 
instability is of a stationary cellular nature and (r is set identically equal to zero. 
Substituting for u,., u g ,  u, and p in the Navier-Stokes equations and neglecting 
quadratic terms in the disturbance velocities leads to a sixth-order system of 
linear homogeneous differential equations. The requirement of no slip at the 
boundaries gives six homogeneous boundary conditions. 

In  the case that the distance between the cylinders, d = R, - R,, is small com- 
pared to the mean radius, Bo = t(Rl + R2), this system of equations can be con- 
siderably simplified. Neglecting terms of order d/R,,, the angular velocity = V / r  
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and the axial velocity W can be approximated by linear and parabolic profiles. To 
the same order of accuracy the non-dimensional disturbance equations for neutral 
stability may be written as 

(D2 - a2)2 u - i{p- aRf ( x ) }  ( 0 2 -  a2) u + 12iaRu = - a2Tg(x) v, 
(D2 - a2) v - i(p- aRf (x ) }  v = u, 

( 3 )  

(4) 

r = R,+dx,  D = d /dx ,  a = Ad, /3 = urd2/v ,  where 

W(X) = Wuvf(X), f ( x )  = 6(&-x” ,  a($) = Q u w g ( 4 ,  

1 - k  
g(x)  = 1 - 2-  k = O2/s2,, k =+ - 1 ,  l + k X ’  

ur denotes the real part of g, u has been redefined as (2Ad2 /v )  u, and W, and 
nu,, denote the average axial and angular velocities, respectively. The parameter 
T associated with the angular velocity is commonly referred to as the Taylor 
number, and the parameter R associated with the axial velocity will be referred to 
as the Reynolds number. Equations (3) and (4) are identical with (25) and (27 )  
given by Goldstein (1937); however the notation is different. 

The boundary conditions are 

Notice that when there is no axial flow, R = 0, B = 0, (3) and (4) reduce 
to those for the classical Taylor problem as given by Chandrasekhar (1954); 
and when the cylinders are stationary, i.e. T = 0, the equations uncouple and 
( 3 )  reduces to the Orr-Sommerfeld equation for the atability of a viscous flow 
between parallel plates. Thus for small values of T and large R we can expect an 
instability of the Tollmien-Schlichting type, and for small R and large T the 
instability will be of a non-stationary cellular nature. Kaye & Elgar (1957) 
have pointed out that there are four regions depending upon the values of R and 
T. This is illustrated qualitatively in figure 1 .  In this paper we shall only consider 
the case in which R is small. That is, we are interested in determining the lower 
left branch of the curves depicted in figure 1 .  

The system of equations ( 3 )  and ( 4 )  together with the boundary conditions (6) 
determine a non-self adjoint characteristic value problem for T as a function of 
R, a, /3 and k. Mathematically the problem is the following: for given real values 
of R and k we wish to find the minimum positive value of T with respect to real 
positive values of a and real values of /3. This minimum value of T ,  T, say, 
determines the value of 51, at which a secondary motion will first occur; the cor- 
responding values a, and /3, give the wave number and the frequency of the 
secondary motion. The wave velocity c = ur/A can be conveniently expressed 
in dimensionless form by c/Wuv = /3/aR. 

It is clear that the determination of T, is a rather complicated four-parameter 
problem and we shall now restrict ourselves to the case in which the cylinders 
rotate in the same direction. In this case it is known that, for R = 0, Q(x)  can be 
approximated by its average value (even for $2, = 0) with only a very small error 
in the determination of T, (see Chandrasekhar 1960). From the form of equation 

u=v=Du=O at x =  +*. (6) 
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(3) it can be anticipated that this will still be a satisfactory approximation 
for R 2 0 as long as k 2 0. Thus we replace g(x )  by its average value of unity 
in (3). 

Even with this approximation the mathematical problem is still difficult 
because of the variable coefficients in (3) and (4) arising from the axial velocity. 
The possibility of approximating W ( z )  by its average value is a much more 
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FIGURE 1. The four regimes of flow following Kaye & Elgar (1957). 

delicate question than that of replacing Q ( x )  by its average value for k 2 0. 
Indeed from studies of the Orr-Sommerfeld equation we can expect that for 
large R the characteristic value will be very sensitive to variations in IT(.). 
However, for the case of small R considered here the situation should not be as 
serious, and in the next section we shall replace W ( x )  by its average value in (3) 
and (4). With these approximations we obtain a characteristic value problem 
which can be solved accurately and fairly easily. In 5 4 we shall treat by approxi- 
mate methods the much more difficult problem where a parabolic profile is used 
for IT@). 

3. Case 1 ; W and 51 approximated by their average values 
In  this case we replacef(x) and g(x) each by unity and ( 3 )  and ( 4 )  reduce to 

{(02-~2)2-ic(D2-a2)+ 12iuB)u = -l'u2v, (7) 

{(02-u*)-ie}v = q, (8) 
I 

where we have let c = B - uR. The characteristic value problem defined by the 
above equations and the boundary conditions ( 6 )  can be treated to a high degree 
of accuracy by convenient approximate techniques such as the Galerkin method 
or it can be solved exactly by the techniques used by DiPrima (1960) to treat 
similar problems. In this section we shall compare several such'methods. 

To solve the problem exactly, let 2 = Ta, redefine u as iuZu and define the 
functionals $(u, v) and +(u, v) by 

1c'(u,v) = S_tuvax. a 
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The above characteristic value problem is equivalent to the following variational 
principle: Among alI functions u and v satisfying the boundary conditions (6), that 
set which makes the first variation of I(u, v) = #(u, v) - iaZ$(u, v) vanish neces- 
sarily satisfy equations (7) and (8). The proof of this variational principle and the 
details of the solution are very similar to problems treated by DiPrima (1960) 
and hence only a brief summary of the method of solution will be given here. 

To solve the variational problem we first note that the solution can be split 
into even and odd functions about x = 0. For the even solution we expand u and 
v in a complete set of even orthonormal functions on - < x < Q. Appropriate 
series are m m 

n= 1 n= 1 
~ ( x )  = Z anEn(x)7 ~ ( x )  = Z bnEn(z), (11) 

where the E,(x) = 24 cos (2n- 1) nx. The boundary conditions u = v = 0 at 
x = k Q are automatically satisfied; the boundary conditions Du = 0 at x = & 4 
introduce the constraining condition 

m 

n= 1 
I? = C ( -  l)n+l(2n- l ) a ,  = 0. 

Substituting the series for u and v in the expression for I and making use of the 
orthonormal properties of the E,(x) gives I as a function of the a, and b,. The 
vanishing of the first variation in 1 subject to the constraint (12) requires the 
vanishing of the partial derivatives of I-PI? with respect to the a, and b,. 
Here ,u is a Lagrange multiplier. This leads to two simultaneous linear non- 
homogeneous equations for a, and b,. Solving for a, and substituting in the 
condition I' = 0 gives the following equation for T as a function of R, a, and 5 

where A ,  = (2n - 1)2n2+a2. This equation after separation into its real and 
imaginary parts and some simple algebraic manipulations to improve the con- 
vergence of one of the series (the convergence is like (2n- 1)4) can be solved by 
trial and error methods. For given values of R and a there are a sequence of pairs 
of real numbers (5, T) that satisfy the two equations. Choosing the smallest poai- 
tive value of T and the corresponding value of 5 and then minimizing with respect 
to a determines T, and the corresponding values of a and g. In carrying out the 
numerical computations a sufficient number of terms in the series were used to 
insure that there would be less than 1 76 error in the determination of T,. The 
results of the computations for R = 5.17,20.67,25-84 and 100 are given in table 1. 
The odd solution which gives a larger value of T, can be treated in a similar manner. 

Although the above method can be used to determine the characteristio values 
as accurately as one wishes, satisfactory answers can be obtained by approximate 
methods that are easier to use. Also in solving equation (13) it is desirable to 
have first approximations to the roots as a starting point for the computations. 
Approximate solutions can be obtained conveniently by the Galerkin method. 
This method consists of expanding u and v in sets of complete functions, prefer- 
ably orthogonal, that satisfy the boundary conditions and then requiring the 

40 Fluid Mech. 9 
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error in the equations for u and v to be orthogonal to the expansion functions for 
u and v. Thus for the even solution of equations (7) and (8) we write u and v 
as 

Investigation 
1 
4 
1 
2 
1 
2 
4 
1 
2 
3 
1 
2 
4 
1 
2 
3 
1 
3 
1 
2 
4 
1 
2 
4 
1 
2 
4 
1 
2 
3 
4 

R 

0 
0 
1 
1 

2 
2 
5 
5.17 
5.17 
5.17 

10.34 
10.34 
20.0 
20.67 
20.67 
20.67 
25.84 
25.84 
40 
40 
40 
60 
60 
60 
80 
80 
80 

100 
100 
100 
100 

a 
3-10 
3-10 
3.11 
3.11 
3-11 
3.12 
3.1 
3.12 
3.13 
3.1 + 
3.16 
3.17 
3.4 
3.4 
3.4 
3.4 
3.55 
3.55 
4.2 
4.23 
4.2 
5.15 
5.15 
5.2 
5.90 
5.92 
6.0 
6.54 
6.58 
6.55 
6.6 

B 
0 
0 
2.53 
2-53 
5.06 
5-08 

12.6 
13.13 
13.16 
13.02 
26.63 
26.68 
55.7 
57.64 
57.52 
57-38 
75-56 
75.33 

141.2 
142.0 
140.9 
267.7 
267.1 
270.2 
417.9 
418.7 
425 
588.2 
591.4 
587-2 
594.0 

BlaR 
- 
- 

0-814 
0.814 
0.814 
0.81.4 
0.813 
0-816 
0.813 
0.812 
0.815 
0.814 
0.819 
0.820 
0.818 
0.816 
0.824 
0.821 
0.840 
0.839 
0.839 
0.866 
0.864 
0.866 
0.885 
0.884 
0.885 
0-899 
0.899 
0.896 
0.900 

T 
1,728 
1,715 
1,730 
1,710 
1,734 
1,714 
1,753 
1,769 
1,750 
1,748 
1,890 
1,870 
2,309 
2,360 
2,338 
2,340 
2,698 
2,678 
3,893 
3,860 
3,881 
5,988 
5,925 
5,962 
8,368 
8,261 
8,319 

10,960 
10,800 
10,800 
10,876 

TABLE 1. Critioal Taylor numbers and oorreeponding values of a and /3 and /3/aR for 
assigned values of R. Investigation 1 refers to Galerkin method with M = 1; 2 refers 
t o  Galerkin method with M = 2; 3 is the exact solution; 4 refers to the results of 
Chandmsekhar (1960). ( W and f2 are approximated by %heir average values.) 

where the En@) are the functions defined earlier, and the C,(x) are even 
orthonormal functions* satisfying C, and DC, = 0 at x = k 4. Substituting 
these series in equations (7) and (8), multiplying (7) by C,(x) and (8) by E,(z) 
for j = 1,2, ..., M, and integrating from - 4  to +& gives 2M simultaneous 

* The funotions C,(G) are of the form (oosh A,z)/(coeh *An) - (om h,z)/(oos *A,), 
where the A, are the poeftive roots of tanh +A +tan *A = 0. These funotione have been tabu- 
lated by Reid & H d  (1958). 
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linear homogeneous equations for a,. . . a,, b, . . . b,. A determinantal equa- 
tion of order 2M for T M a function of R, a, and 6 is obtained from the necessary 
condition that the determinant of the coefficients vanish. Computations have 
been carried out for M = 1 and 2 and the results are tabulated in table 1 .  
The results for M = 2 are also shown graphically in figure 2. It is clear from 
table 1 that the results even for M = 1 are satisfactory, differing by about 1 yo 
or less from the results for M = 2,  and in close agreement with the results obtained 
from the exact computations. The success of the Galerkin methods with M = 1 
for this problem rests essentially on the fact that there are no singular points in 
equations ( 7 )  and (8); hence the characteristic function corresponding to the 
smallest positive value of T can be easily approximated. Further, for M = 1 the 
computations are particularly easy, requiring only the evaluation of some 
simple integrals, Finally, it should be pointed out that the solution of the 
characteristic problem by the Galerkin method as it has just been described is 
completely equivalent to the substitution of the series given by (14) in the expres- 
sions for q5 and $andthenrequiringItobestationaryas afunctionofthea, and b,. 

When this work was nearly completed the author learned that Chandrasekhar 
(1 960) had considered the characteristic value problem defined by equations 
( 7 )  and (8) and the boundary conditions ( 6 )  with R replaced* by - R  and the 
variables u and v redefined so that the right-hand sides of equations ( 7 )  and (8) 
are v and - Ta'u, respectively. The problem is solved by the methods developed 
and used by Chandrasekhar in a series of papers. The function v ( x )  is expanded in 
a set of complete functions satisfying the boundary conditions v = 0 at x = & 4, 
and equation ( 7 )  is then solved for (u) the four constants of integration being 
determined by the boundary conditions u = Du = 0 at x = f 4. The series for u 
and v are then substituted in the second-order equation for v and a characteristic 
determinantal equation is obtained by requiring that the error in the differential 
equation be orthogonal to the original expansion functions. This method is an 
improvement on the Galerkin technique but it does require in this case a consider- 
able amount of complex arithmetic. On the other hand, it should be pointed out 
that the size of the determinantal equation increases like M rather than 2 M  
M was the case earlier. The results found by Chandrasekhar (1960) using one 
term in the series for v are in agreement with the results obtained by the Galerkin 
method and the exact solution. They are recorded in table 1 .  

4. Case 2; SZ approximated by its average value 
In this case (3) and (4) may be rewritten aa 

(0'- az)'v- i{[ + aR[ 1 - 6($ - x')]} (0'- a') u + 12i~Ru = - Tu'v, (15) 
(D' - a') v - i{[ + uR[ 1 - 6( & - x')]} v = U,  (16)  

where again we have let [ = /3 - aR. These equations are identical with ( 7 )  and 
(8) for case 1 except for the bracketed term 1 - 6 ( & - x 2 ) .  This term would be 

* This simply means that the axial velocity is in the opposite direction to that chosen 
here, and hence since the disturbance velocities have the same form the values of Q (/3 in 
this paper) tabulated by Chandrasekhar in table 1 of his paper should be prehed by a 
minw sign. Thie wm a typographical error. 

40-2 
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replaced by zero if we approximate the axial velocity by its average value. 
Because of the presence of this term the characteristic value problem defined by 
(15) and (1 6) and the boundary conditions (6) is considerably more difficult than 
the characteristic value problem of caae 1. Neither the method used earlier for 
the exact solution nor the method suggested by Chandrasekhar is applicable here. 

Approximate values of T can be found using the Galerkin method. Again the 
solution can be split into even and odd functions. For the even solution we use 
the series given in (14) for u and w and proceed in the manner described in the 

Investigation 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

R 
1 
1 
1 

2 
2 
2 
5,17 
5-17 
5.17 

10.34 
10.34 
10.34 
20.67 
20.67 
20.67 
40 
40 
40 
60 
60 
60 

a 

3.11 
3.12 
3.11 
3.11 
3.12 
3.12 
3.11 
3-12 
3-13 
3-15 
3.13 
3.17 
3.28 
3.15 
3-40 
3.95 
3-2 
4.23 
4-73 
3.15 
5.15 

B 
3.63 
3-65 
2-53 
7.26 
7.30 
5.08 

18.77 
18.9 
13.16 
38.05 
37-8 
26.68 
79.40 
75.8 
57.52 

187.5 
147-7 
142.0 
342.6 
215.7 
267.1 

PlaR 
- 

1.17 
0.814 
- 

1.17 
0.814 
- 

1.17 
0.812 

1.17 
0.813 

- 

- 
1.16 
0.818 

1.15 
0.839 

- 

- 
1-14 
0.864 

T 
1729 
1710 
1710 
1732 
1714 
1714 
1780 
1744 
1750 
1815 
1852 
1870 
2068 
2293 
2338 
2887 
4066 
3860 
396,l 
7563' 
5925 

TABLE 2. Critical Taylor numbers and corresponding values of a; and /3 and FrGR for BB- 

signed values of R. Investigations 1 and 2 refer to the Galerkin method with M = 1, and 2 
with a parabolic pro& used for W. 3 refers to the Galerkin method with M = 2 and W 
epproximated by its average value. TJT, is the ratio of the values of T for investigations 
1 and 2. 

previous section. Actually the only new computations required are the evalua- 
tion of the integrals involving 9. Computations have been carried out for M = 1 
and 2, and the results are tabulated in table 2. The results from case 1 using the 
Galerkin method with M = 2 are also shown in table 2, and the results for cases 1 
and 2 with M = 2 are given graphically in figure 2. 

There are two points that should be made about these results. First, in case 2 
as R increases beyond about a value of 20-30 there is an increasing difference 
between the results of the first and second approximations. This indicates that 
when the parabolic profile is used for the axial velocity the characteristic func- 
tions are more difficult to approximate. Practically speaking, since there is little 
difference between the first and second approximations up t o  values of R - 20, 
we might expect the second approximation to be satisfactory up to values of 
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R - 40. Of course, the only way we can be sure the second approximation is 
satisfactory is to compute a third approximation and compare the two. This 
would require the solution of a sixth-order determinantal equation with complex 
entries, which was not done in the present work. Further it should be noted that 
the two-term approximation predicts only a very slight increase of critical wave- 
number with increasing R up to values of about 40-50 and then a slight decrease. 
However, it would be dangerous to draw any conclusions about this decrease 
in a, at  R = 60 with the information available. 

120 0 
- 
- 

The second point concerns the difference between the two-term approximations 
for the two cases. Even for very small values of R the results of case 2 ( W approxi- 
mated by a parabolic profile) give a frequency that is higher than that for the 
case 1 ( W approximated by its average value). As R increases beyond a value of 
about 20-30 the values of T, and a, for the two cases also begin to diverge; 
T, for case 2 grows more rapidly than for case 1, and a, for case 2 remains nearly 
constant while increasing for case 1. These differences can be traced to the evalua- 
tion of the integrals 

If W ( z )  is approximated by its average value these integrals vanish; on the other 
hand, when the parabolic profile is used they take on values such that when multi- 
plied by the factor aR they are of the same order of magnitude m the larger con- 
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tributions from other terms in the differential equations. Indeed for n = m = 1 
and a - 3 the first integral in (17) is approximately 10, and when multiplied by 
aR for R - 20-60 gives a contribution of about 600-1800. This must be com- 
pared with the contributions from the integral of C,(D2 - C, from - Q to Q 
which is about 700 for a - 3. 

5. Discussion 
The results of the present analysis show that when the cylinders are rotating 

in the same direction the critical Taylor number increases rapidly with increasing 
Reynolds number. Depending upon whether the axial velocity is approximated 
by its average values or by a parabolic profile, the results are slightly different. 
In  the latter case, relative to the former the increase in T, with increasing R is 
more rapid, the corresponding values of the frequency are greater, and the values 
of the wave-number are less. The ratio of the wave velocity to the mean average 
axial velocity is approximately constant up to values of R - 40 in each case but 
greater by a factor of about 1.17 in the latter case and less by a factor of about 
0.82 in the former case. 

In  figure 2 the variation of T, with R for the two cases is shown graphically 
and also compared with the recent experimental work of Kaye & Elgar (1957) 
and Donnelly & Fultz" (1960). For values of R up to about 20-30 the results of 
Donnelly & Fultz are in good agreement with the results for both cases; for 
larger values of R their measurements tend to confirm the more rapid increase 
in T, with increasing R predicted by the use of a parabolic profile for the axial 
velocity. The results of Kaye & Elgar (1957) are also in qualitative agreement with 
the theoretical results found here. For small values of R the larger values of T, 
that they find may be attributed, in part, to the larger values of d/R, that were 
used in their experiments. Indeed for R = 0 computation of the critical Taylor 
number as defined here for the case k = 0 and d/R,  = 8 using the critical value of 
R, found by Chandrasekhar (1958) gives a value of T, of about 3100 in contrast 
to a value of about 1710 found using a small-gap approximation. 

The question of the variation of the wave-number and frequency associated 
with the secondary motion with R requires more detailed measurements than 
have been carried out to date. However, Donnelly & Fultz (1960) did make one 
frequency measurement, finding B N 5.8 at R N 2.7. This value of ,8 is below the 
value predicted in both cases 1 and 2. Also, though Kaye & Elgar (1967) did not 
make any measurements of A, Elgar in a letter to the author pointed out that for 
the range of Reynolds numbers considered here it was his impression that the 
wavelength changed only slightly with increasing R. This would again tend to 
confirm the results found using a parabolic profile for the axial velocity. 

The theoretical results of Goldstein (1937) which predict that T, will increase 
with increasing R up to values of about 15-20 and then decrease rapidly with 
increasing R (T, - 763 a t  R = 25.84) are not shown in figure 2. As mentioned 
earlier, the characteristic value problem formulated here is identical with that 

* Just as this manuscript waa completed Mr Donnelly and M i  Fultz, in a private 
communication, were kind enough to furnish the author the preliminary data that axe 
shown in figure 2. 
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treated by Goldstein (1937) Since the results found here in case 1 agree with 
those found independently and by a different method by Chandrasekhar (1960), 
it would appear that there must be a numerical error in Goldstein’s computations. 
However, his computations were much too lengthy to check in detail. Also the 
experimental results of Cornish (1933) and Fage (1938) which are in disagree- 
ment with the theoretical results found here and the more recent experimental 
work are not shown in figure 2. For a comparison of these results with the 
experimental results of Kaye & Elgar (1957), see the latter paper. 

Finally, this analysis shows clearly that the simpler characteristic-value 
problem with SL and W approximated by their average values can be solved 
easily by several methods. The results of even a one-term approximation using 
the Galerkin method are satisfactory up to Reynolds number of at least 100. 
On the other hand, the more physically correct situation with W approximated 
by a parabolic profile leads to a much more difficult mathematical problem. In 
this case the use of the Galerkin method with two terms gives results that are 
acceptable only up to values of the Reynolds number of about 40-50. 

The results presented in this paper were obtained in the course of research 
sponsored by the Mechanics Branch of the Office of Naval Research. 

R E F E R E N C E S  

APPEL, C. 1959 Tech. Assoc. Pulp 9, Paper IndustmJ, 42, 767-73. 
CHANDRASE~AR,  S. 1954 Mathemdika, 1, 5-13. 
CHANDRASEKHAR, S. 1958 Proc. Roy. SOC. A, 246, 301-11. 
CHANDRASEEHAR, S. 1960 Proc. Nat. A d .  Sci. 46, 141-3. 
CORNISH, R. J. 1933 Proc. Roy. SOC. A, 140, 227-40. 
DIPRIMA, R. C. 1960 Quart. AppZ. Math. (in the Presa). 
DONNELLY, R.  & FULTZ, D. 1960 Proc. Nat. A d .  Sci. 46,1150-4. 
FAGE, A. 1938 Proc. Roy. SOC. A, 165, 501-29. 

GOLDSTEIN, S. 1937 Proc. C a d .  Phil. SOC. 33, 41-81. 
KAYE, J. & ELUAR, E.C.  1967 Tram. Amr.  SOC. Mah. Eng. 80, 753-86. 
REID, W. & HARRIS, D. 1958 Astrophys. J .  Supp. 3, 429-62. 

HARRIS, D. & REID, W. H. 1958 AShphy8. J .  3,429-53. 


